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A numerical program has been developed for the calculation of atomic photoelectric differential and total 
cross sections, including all polarization correlations. The program is designed to calculate relativistic 
Coulomb wave functions in a screened central potential; the outgoing continuum wave function is obtained 
in a partial-wave series. Results are presented here for iT-shell differential and total cross sections in point 
Coulomb potentials (i.e., unscreened) ranging from charge Z = 13 to Z—92, and covering the range of incident 
photon energies from 200 keV to 2 MeV. Enough data are presented to permit interpolation throughout 
these ranges. The total cross sections above 1 MeV are found to be significantly lower than previously 
accepted values. Further, the angular distributions from heavy elements deviate greatly from the commonly 
used Sauter distribution. These features are discussed and compared with existing experimental and theoreti
cal work. 

I. INTRODUCTION 

ACCURATE predictions of the cross sections for the 
atomic photoelectric effect have in general been 

unavailable. Except for special limiting cases results 
must be obtained by numerical methods, even when the 
electron wave functions are assumed to be hydrogen-like 
and so available in analytic form. The complexity of 
these procedures has encouraged the use of extrapolation 
formulas based on various analytic approximations and 
indeed, at least for the total cross sections, moderate 
agreement with experiment has been obtained over a 
wide energy range.1 The availability of accurate experi
mental total cross sections, the increasing need for 
accurate predictions of the differential cross sections, 
and the recent interest in the polarization properties of 
these reactions, have encouraged us to attempt their 
calculation by numerical means.2 

We calculate in the central-field approximation, that 
is, we assume any atomic electron, whether bound or 
continuum, interacts only with a scalar spherically sym-
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of Scientific Research Grant AF-AFOSR-62-452, and in part by 
the U. S. Atomic Energy Commission. 

* Address beginning August 1964: Department of Physics, 
University of Pittsburgh, Pittsburgh, Pennsylvania. 

{Present address: Physics International, Berkeley, California. 
1 We will make some references to the previous work in this field 

in succeeding sections. The status of the subject up to 1954 is 
summarized for instance in W. Heitler, Quantum Theory of Radia
tion (Oxford University Press, New York, 1954), 3rd ed. We, in 
general, follow the notation of this book, but throughout we shall 
use the units h = c = me — l. Thus, distances are measured in units 
of the electron compton wave length, etc. We will often use a=Ze2. 

2 While this work was in progress, an independent numerical 
calculation of i^-shell photoelectric cross sections was reported by 
S. Hultberg, B. Nagel, and P. Olsson, Arkiv Fysik 20, 555 (1961), 
hereafter referred to as HNO. This calculation, although using a 
method which cannot be applied to screened potentials and not 
obtaining results above 662 keV, is very valuable both for the 
information it provided on photoeffect at the lower energies and 
because it provides checking points for subsequent calculations, 
such as the present work. 

metric potential. Further, we neglect the effects of 
finite nuclear size, so that for sufficiently small distances 
this potential must simply reduce to the pure Coulomb 
Ze2/r potential. For most applications these assumptions 
are appropriate. 

Under these circumstances the theory of the atomic 
photoelectric effect is a simple application of first-order 
radiation theory. We require a fully relativistic treat
ment, since even at low energies, relativistic effects can 
be significant in a high-Z element. Then the differential 
cross section for the photoeffect is1 

d<r/dtt=(27r)~2pe\H\2 (1.1) 

subject to energy conservation, where 

• / • 
H=-e(2Tr/kyiz / d»r4>iin*a-eeik-yil (1.2) 

The absorbed radiation is described by its momentum k 
and polarization e. ̂ i n is a solution of the Dirac equation 
in a central potential corresponding to an initial bound 
state and ̂ fin is a solution corresponding to an outgoing 
electron of definite momentum p and energy e ("plane 
wave" plus ingoing spherical waves). 

Given the central potential, the entire problem is to 
solve the Dirac equation for the desired wave functions 
and then to integrate to obtain the matrix elements H. 
We have constructed a code for the IBM-7090 which 
does this. 

In the present paper we present results for photoeffect 
from the K shell of an atom, obtained using wave func
tions in the pure point Coulomb field. The range of 
elements from aluminum (Z=13) to uranium (Z=92) 
was investigated for photon energies k from 200 keV to 
2 MeV. Enough data were taken to permit interpolation 
throughout these ranges. For each choice of Z and k we 
obtained (1) the total cross section, (2) the differential 
cross section, and (3) all polarization correlations be-
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tween incident photon and ejected electron. Results for 
differential and total cross sections are given here; the 
results obtained for the polarization correlations will be 
reported separately.3 Most of the information is pre
sented in tabular form. Modifications caused by screen
ing,4 extensions to lower and higher energies, and photo-
effect from higher shells will be discussed in subsequent 
work. 

The organization of the present paper is then as 
follows. In Sec. II we discuss the general properties of 
the photoeffect, as revealed by simple analytic approxi
mations, and then develop the complete mathematical 
formalism for the process. Section III is devoted to a 
short discussion of the numerical methods for calculat
ing wave functions, some features of which have not 
previously been published. The accuracy of the numeri
cal calculations is discussed in Sec. IV. The remainder 
of the paper presents our results and compares them 
with experiment and previous theory. This is done for 
the total cross section in Sec. V and for the differential 
cross sections in Sec. VI. 

II. GENERAL PROPERTIES AND FORMALISM 

The main purpose of this section is to develop the 
formalism, based on Eqs. (1.1) and (1.2), needed for 
the calculation of the photoeffect. The wave function 
f̂in for the outgoing electron must be written as a sum 

over partial waves with appropriate asymptotic proper
ties. Then for each partial wave the integrations over 
angles of Eq. (1.2) may be performed analytically, leav
ing a small number of radial integrals to be done 
numerically. The cross sections and the polarization 
correlations will be completely specified by these 
quantities. 

It is useful, however, to first have a qualitative under
standing of the general features of the process. For this 
purpose we replace Eq. (1.2) with the corresponding 
nonrelativistic expression 

/ -
ff=-e(2ir/&)1/2 / dVfin*p-ee*-V. (2.1) 

We assume a pure Coulomb potential, so that for photo
effect from the K shell ^ i n= (a8/ir)1>V-°r, where a^Ze2. 
We also make the Born approximation and replace \pnn 

with the plane wave e*p*r. Then the integral (2.1) is 
easily done, and the differential cross section for photo 
effect from both iT-shell electrons is given as 

da pz sin20 

dQ k5ez ( 1 - 0 C O S 0 ) 4 ' 
(2.2) 

3 R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys. 
Rev. 134, A916 (1964) (following paper). 

4 For i£-shell photoeffect, it is believed that screening effects are 
quite small, typically (in heavy elements) of the order of 1-2%. 
For all other shells, screening effects are large and the use of 
hydrogen-like wave functions in a numerical calculation is not 
justified. 

where 0 is the angle between k and p, and ei is the 
component of the photon polarization vector in the 
scattering plane which k and p define. 

This cross section vanishes both in the forward and 
backward directions. For low energies (/3<$Cl) it has a 
broad maximum centered at 0=90°; as the energy 
increases the maximum shifts toward smaller angles and 
its width decreases. Equation (2.2) is independent of 
any circular polarization of the incident photons, but it 
is sensitive to linear polarization: If the beam is linearly 
polarized in the direction e, ei=cos<p, where <p is the 
angle between the plane of k and p and the plane of k 
and e; there is no emission perpendicular to the direction 
of polarization. Integrating over angles, the total cross 
section for unpolarized photons of low energy (but far 
above threshold) reduces to 

a=32^we2a5/3k7'2. (2.3) 

We note that this (1) varies as the fifth power of Z and 
(2) decreases rapidly with increasing energy. 

These results must be modified both for low and for 
high energies. Near threshold the Born approximation 
expansion in a/fi is invalid; when the exact non
relativistic Coulomb wave functions are used it is found1 

that the total cross section (2.3) must be multiplied by 

'-"•Q 
J \ 1/2 e—4?;cot-l)7 

1 - 6 T 2 ' * 
, v^u/ik-m*, (2.4) 

where i" is the ionization energy. This causes an appre
ciable reduction from the Born approximation predic
tion, which is reached only slowly as the energy in
creases, in the entire low-energy region; at the iT-shell 
threshold/-0.12.5 

For higher energies a relativistic treatment based on 
Eq. (1.2) is necessary. Sauter found that, to lowest 
order in Z, the differential cross section from linearly 
polarized photons is given by6 

da pz r sin20 cosV 1— (1—B2)112 sin20 c o s V 
— = 4 A * B — 
dQ, &5e4L(l-/3cos0)4 2(l-/32) (1-/3 cos0)3 

[\-{\-$2yi2J sin20 

4 ( 1 _02)3/2 ( 1 - / 3 COS0)3 • ] • 
(2.5) 

This again vanishes in the forward and backward 
directions; the maximum narrows and moves toward the 
forward direction as the energy increases. There is now 
some emission perpendicular to the direction of polariza-

5 However, in heavy elements relativistic effects are important 
at threshold. Part of this is simply due to the relativistic shift of 
the threshold energy. The relativistic i£-shell photoeffect at 
threshold has been discussed by B. Nagel and P. Olsson, Arkiv 
Fysik 18, 29 (1960), in the approximation of an unscreened point 
Coulomb potential. However, as the authors note, screening 
effects are expected to be significant in the threshold region even 
for iT-shell photoeffect. 

6 F. Sauter, Ann. Physik 11, 454 (1931). 
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tion. For very high energies the total cross section from 
unpolarized photons becomes 

<r=47re2a5/&, (2.6) 

and so still varies with the fifth power of Z but de
creases less rapidly with increasing energy. 

For high-Z elements the corrections to this lowest 
order theory can be very large. The high-energy be
havior of the total cross section has been obtained 
exactly,7 with numerical methods, and for Z = 8 2 (lead) 
the prediction of Eq. (2.6) is too large by a factor of 
five. The expression 

<T= [47reVA>- 7 r a ( l -47ra /15) , (2.7) 

derived analytically, is in fair agreement with these 
results, and shows the nature of the suppression of the 
Z5 dependence. I t has also been shown that the cross 
section does not vanish in the forward direction when 
terms of relative order a2 are considered, and such 
effects have been observed experimentally.1 

In relativistic photoeffect there will also be inter
actions with the electron spin, and hence many more 
types of polarization correlations are possible. To 
describe these it is convenient to introduce the usual 
polarization parameters. We describe photon polariza
tion with the quantities 

&=i(eie2*-e2e1*)y 

(2.8) 

and we describe the polarization of the ejected electron 
by the direction £ of its spin in its rest system, f 3 is 
taken along p, f 1 in the scattering plane. Then if we sum 
or average over the initial polarization states of the 
bound electron, the differential cross section for photo-
effect must be of the form 

da /dv\ 3 
~ ~ I ~T~ I 1-2 JL, S*f jWiJ , 
dQ, \dW unpol M'̂ O 

(2.9) 

where £o=fo=Coo=l, and {da/dQ)unvo\ is the differ
ential cross section from unpolarized photons, summed 
over final electron spins. The correlation C10 connects 
linearly polarized photons and unpolarized electrons, 
and as already noted, occurs in the lowest order cross 
section. Also occurring in lowest order are C33, connect
ing longitudinally polarized electrons and transversely 
polarized photons, and C31. The correlations C02, C12, 
C21, and C23 appear in relative order a. The remaining 
correlations are forbidden by invariance considerations. 

We can now develop the formalism needed for a 
numerical calculation of these photoeffect cross sections. 
To begin with, we need wave functions for the electrons. 
A bound state will be specified by capital letters: total 
angular momentum / , orbital angular momentum L, 
( 7 = L ± f ) , the azimuthal quantum number M, and 

total energy (including rest mass energy) E. Thus, for 
^ i n in Eq. (1.2) we write 

*< 
/GK(r) QjLM(f)\ 

x~ 1 1 ' (2.10) 

where V and K are defined by 

L+L' = 2J, 

J C = = F ( / + £ ) a s / = Z , ± J , (or J = Z / = F j ) , (2.11) 

and the spherical spinors QJLM are defined in terms of 
spherical harmonics8 by 

^JLM—\ 
/CjLM+ YL„ 

\CJ L,M+b :) 
(2.12) 

where 

/ = £ + * 

rJ+M-i1'2 rJ-M+iy* :r [ L2Z+1J L 2L+1 J ' 

c-= 
r / - M - i 1 / 2 rJ+M+1-]1'2 

(2.13) 

L2L+lJ L 2L+1 J 

The radial functions GK and FK are to be obtained as 
solutions of the coupled equations 

IE+1+ i]FK- ldGjdr+ ( 1 + K ) (GJr)] = 0 , 

IE-1+ i]GK+[_dFJdr+ ( 1 - K ) (F«A)] = 0. 
(2.14) 

The potential <p must be specified (for the pure Coulomb 
potential <p=a/r) and the energy E is then determined 
from the eigenvalue problem. The wave function will be 
normalized by requiring 

/ 
r2drl(Fy+(Gy]=l. (2.15) 

' R. H. Pratt, Phys. Rev. 117, 1017 (1960). 

The wave function ^fin of the outgoing continuum 
electron is written as a sum over partial-wave solutions 
with appropriate asymptotic properties: 

*nn=Z^jim
+(p)UA)ile-i84 ) . (2.16) 

ilm \if&jl>m(f)/ 

Equations (2.10)-(2.14) are understood to remain valid 
with the substitution of the small letters j , I, I', tn, K, e, 
etc., and of course p2+l= e2, where p is the momentum 
of the outgoing particle. The two-spinor UA specifies the 
polarization properties of the electron in its rest frame. 
Equation (2.15), however, is not appropriate for 
continuum functions, and is replaced by the requirement 
that the functions are normalized such that at large 

8 We use the phase conventions of A. R. Edmonds, Angular 
Momentum in Quantum Mechanics (Princeton University Press, 
Princeton, New Jersey, 1957). 
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distances 
/ € + i y / 2 i 

—>( I —sm(pr-ilir+5K), 

u 

2e / pr 

^ - I X 1 ' 2 ! 
( ) — C O S ( ^ - | / T T + 5 K ) . 
\ 2e / pr 

(2.17) 

Equation (2.17) also defines the phase shifts dK. [For 
the pure Coulomb potentials dK in Eq. (2.17) but not Eq. 
(2.16) should be replaced by 5K+ (ae/p) \n2pr—this 
feature arises from the long-range character of the 
potential.] Note that the sum over j and I subject to 
j = /=b | in Eq. (2.16) is equivalent to a single sum over 
K, where tc ranges over all positive and negative integers. 

Substituting the wave functions (2.10) and (2.16) 
back into Eq. (1.2), H can be written as a summation of 
terms, each corresponding to a given K and m in the 
series for the continuum wave function. I t is convenient 
to remove some constants and write this in the form 

H=-e(2ir/ky!2ZWK (2.18) 

where each 5CK represents a sum over all m values 
consistent with that /c. 

Now we choose a z axis along the photon direction k 
and start performing the angular integrations. In the <p 
integration nonvanishing contributions come only for 
ra=Mzbl, and thus the summation over m implied in 
3CK reduces to two terms. This is most conveniently 
written in terms of the circular polarization coefficients 
e±=exdoiey, for then 

+ (UA*Q»M-i($))e+Rr(M)l, (2.19) 

where the R's, a set of numbers resulting from 6 and r 
integrations contain all the remaining information of the 
problem. (R's of ± M are easily related.) To proceed 
further for an arbitrary bound state one expands the 
plane wave eik'T of Eq. (1.2) in spherical harmonics 
and then integrates over products of three spherical 
harmonics. 

For the purpose of this paper we restrict our attention 
to bound S states ( / = § , L = 0) and the results are quite 
simple. All the information of the problem is contained 
in two sets of numbers, R^, defined by 

r rKH-i)-i1/2 

R> -I' 
xD'wW+iwW], 

rHrlgtFtCn-i-

r / I2 \m 

(2.20) 

+V«fKGKCjl,„cW+l) m3i> (kr) 

where r;K=dbl according as j=lzF%. [These R's corre
spond to R±(M = + § ) of Eq. (2.19).] Then for M= + i 

+(UA*QM@))e+Rr'], (2.21) 
and for M=— \ 

3C,= -4Tr}Kei8^(UA^jl.l(V))e+R + 

+(UA*tijl+i(p))e-RK-l. (2.22) 

We shall sum over the two electrons of a bound S state. 
Then the differential cross section for a photon with 
polarization parameter £»• [as in Eq. (2.8)] to eject an 
electron with spin direction £ (in its rest system, with 
f 3 chosen along the electron, and f i in the scattering 
plane) into the solid angle dti may be written 

da 3 
(2.23) 

(2.24) 
where 

S o = f o = l , A = 167re2pe/k 

The only nonvanishing B's are 

^oo=[|J-|2+l^-|2+|/+ |2+|^+ |2], 
£02 = 2 Im£J-*K-+J+*K+l, 

B10= 2 R e [ / _ * / + + # - * i q _ ] , 

B12= 2 ImZJ-*K++J+*KJ], 

B21=-2 cos0 Im[JJ*K++KJ*J+'] 

+ 2 sin0 Im[J-*J++K+*KJ], (2.25) 

B23=-2 cos0 ImZJJ*J++K+*KS\ 
- 2 sinfl Im£J-.*K++K-*J+l, 

5 8 1 = 2 cos0 Re[JJ¥K--J+*K+2 

-s inC| / - | 2 - |^- i 2+|^+ | 2~i /+ l 2 ] , 
^ 3 3 = C 0 S C | / - | 2 - | ^ - | 2 + | ^ + | 2 - | / + | 2 ] 

+ 2 sin0 R e [ / _ * i T _ - J+*K+1, 
where 

J _ = - ( 4 7 r ) - 1 / 2 E 
r u-ii i1/2 

VKeM — 1 

LUU+iJ 
R+PficosS), 

(2.26) 
Z _ = (47T)-1/2 £ e^[_| K\\K*- 11 J - i / ^ + P j ^ c o s ^ ) , 

K 

K 

K+= (4TT)-1/2 L «*«"[! *l ]1/2^-Pz°(cos6>). 

In the sums of Eq. (2.26) terms for which the Pi's do not 
exist are to be omitted; 6 is the angle between photon 
direction k and electron direction p. [The last four B's 
of Eq. (2.25) take their form when a rotation is made so 
that f 3 refers to a spin along the electron direction.] To 
put our result in the form of Eq. (2.9) we finally define 
the polarization correlations by 

Cij=Bij/Bo (2.27) 

file:///n2pr
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The differential cross section from unpolarized photons, 
summed over electron spins is then 

Since the_ equations are linear and homogeneous, we may 
choose (?*(()) arbitrarily equal to one. FK(0) is then 

9L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), 2nd ed., Sec. 44, p. 336. 

determined by either of the Eqs. (3.3), and y is deter
mined by the requirement that 

rFj+i-Fj (y-K) _ n 
+ — ~+~ (*Wi+*V) h0> 

L rj+1-rj 2*7+1 J 
w i t h O < j < / - l . 

The basis of the method is the simultaneous solution 

R = AB, oo (2.28) 
unpol 

and the total cross section 

<T = 2TA[ B0osinddd==AY,l(RK+y+(R<-y']. (2.29) 
J o K 

Thus, when the quantities R^ (and the phase shifts 8K) 
have been calculated, all properties of the process may 
be predicted. And the main work in calculating these 
quantities lies in the prior calculation of the electron 
wave functions. 

III. METHOD OF SOLUTION OF THE 
WAVE EQUATIONS 

A. The Bound-State Wave Equations 

The bound-state wave equations 

(E+l+<p)FK-ldGK/dr+(l+K)(GK/rK = 0, 

(E-l+<p)GK+ZdFJdr+(l--KXFK/r)l = 0, 
(3.1) 

constitute an eigenvalue problem for the energy eigen
value E and the bound-state wave functions FK, GK. 
Since FK and GK behave like r**~l near r==0 for the 
Coulomb potential9 and are therefore singular for 7 < 1 , 
it is convenient to make the substitution 

G^GKri-\ FK=FKry-K 

Equations (3.1) then become 

N_ rdGK ( T + K ) n 
(E+l+<p)FK-\ —+ GK = 0 , 

L dr r J 

(E-
_ VdFK ( T - K ) _ - | 

•1+V)GM — + Ft = 0 , 
L dr r J 

(3.2) 

where FK and GK are finite at r = 0 . 
Although the following analysis for the solution of 

Eqs. (3.2) applies to a potential <p of any form, we shall 
in the present paper specify the Coulomb potential 
<p=a/r. 

The boundary conditions associated with (3.2) with 
(p — a/r are determined at the origin by multiplying 
through by r and letting r==0. We have then 

aFK(0)-(y+K)GK(0) = 0, 
(3.3) 

a 

y—K 

•iy+K) 

a 
= 0 

or 
7 = (/c2—a2) 1/2 (3.4) 

where the positive sign is taken to obtain a physically 
acceptable wave function. 

In order to determine E we need to satisfy the bound
ary condition at r—><*>; that is we must approach the 
asymptotic solution of (3.2). This solution is determined 
by letting r—>oo in (3.2), leading to 

( £ + l ) P K - G ' , = = 0 , 

( £ - l ) G K + F K = 0 , 

which have the solution 

(3.5) 

where X== (1—E2)112 with E< 1. Increasing solutions are 
ruled out since the wave function must be bounded as 
r—»co. [In the point Coulomb potential, these forms 
must be multiplied by fnH*l, where n is the principal 
quantum number; this has no effect for the K shell.] 

In order to numerically integrate (3.2), we must re
place them by suitable difference equations. In the 
difference equations we have chosen, we evaluate the 
wave functions F and G (for simplification we have 
dropped the subscript K) at the discrete points labeled 
by integral values of j running from zero at r=0 to / 
at a point r j . The coordinate rj is that point where the 
asymptotic boundary conditions (3.5) are satisfied in 
appropriate difference form to within some tolerance T\. 
The conditions (3.2) are applied at j+% and the deriva
tives are therefore evaluated as the slope of the chords 
joining values at j and j+1. Quantities needed at y + | 
are evaluated by averaging. The resulting finite differ
ence equations are 

(E+l+<pj+h) 
(Fj+1+Fj) 

L u 

(E-l+cpj+h) 

Gj+1-Gj (y+K) 

rj+i-rj 2rM 

(Gj+i+Gj) 

(Gj+i+G: 
!i)] = 0, 

(3.6) 

= 0, 

= 0, 
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of the complete set of difference equations and boundary 
conditions. This method has been described for a two-
point boundary value problem by Henyey et al.10 The 
suggestion that the method could also be used for eigen
value problems was made to one of us by Henyey11 

many years ago and has in fact been used by Levee to 
solve many problems. 

The Eqs. (3.6), although linear in the functions F 
and G, are nonlinear in the unknowns because of the 
appearance of the eigenvalue E. They must therefore be 
solved by an iterative technique such as the Newton-
Raphson method described in Henyey et al.10 

Formally we may write (3.6) as 

(3.7) 

o < j < / - i . 

The Newton-Raphson method when applied to a system 

fk(xh%2,--,%K) = 0, 4 = 1 , 2 , --,K (3.8) 

corrects an approximate set of values xip, x2
p, • • •, XKP 

by variations 8xip, 8x2
p, • • •, 8XKP to give improved 

values xip+1, X2P+1, • • •, XKP+1 where p is the iteration 
number. The variations are determined from the 
equations 

K dfk 
fk+Y,—tei=0, 4 = 1 , 2 , 

1=1 dxi 
K (3.9) 

and the iteration is continued until the Eqs. (3.8) are 
satisfied to within some desired tolerance. 

If we define the following two vectors 

/QM\ M \ 

we may write, in accordance with (3.9), the variational 
equations derived from (3.6) as 

Aj+iqj+i+Bj+M+CjdE+Qj+^O, 0<j<J-l, (3.10) 

where 

Ai+i= 

OQi+i1 dQj. 

dPm 

dQl+i2 

dG, i + i 

dF 3+1 dG, 

B, :i+h~-

7+i 

c,= 

aft+i1 aft+i1 

dQi+f 

dGj 

dQj+i2 

dGj J 

[dQi+i1 

dE 

9Q: i+i 

(. dE J 

10 L. G. Henyey, L. Wilets, K. H. Bohm, R. LeLevier, and R. D. 
Levee, Astrophys. J. 129, 628 (1959). 

11L. G. Henyey (private communication to Levee). 

Since the matrix of the coefficients of Eqs. (3.10) is of 
the form 

y=o 
i 
2 

qo 
" X X 

X 

42 

X 

X 

qz • 

X 

" qj-i qj 8E 
X 

X 

X 

J-\ X X 

we have / equations in J+2 unknowns. The two addi
tional conditions which are necessary to solve the equa
tions are given by the boundary condition at j==0 and 
the asymptotic condition at j=J. 

At 7==0, F0 is given by either of (3.3) when we have 
chosen G0= 1 arbitrarily. Then q0=0 and the first equa
tion of (3.10) gives qi in terms of dE. Using this relation 
we eliminate qi from the second of (3.10) to give q2 in 
terms of 8E. The elimination process is continued to the 
final equation which gives qj in terms of 8E. These 
equations will be of the form 

qi=efiE+h, 0<j<J, 
qo=0. 

(3.H) 

Substituting the first of (3.11) into (3.10) we find 
recursion relations for the two-vectors ej and /y as 

ej+x=—AM
 1(Bj+iej+Cj), 

(3.12) 

Since go=0, e 0 = / o = 0 and we may determine all the eJy 

/yfrom (3.12) for 0<j<J. 
At j=J we write the asymptotic solution (3.5) in 

difference form as 

5 j=# j_ i« t - x <v-v- i ) ] . (3.13) 

Taking the variation of (3.13) we have 

- (rJ-rj.1)Gj.1(d\/dE)8E'], (3.14) 

where 

d\/dE=-E/(l-E2yt2 (3.15) 

from the asymptotic solution. 
Now from (3.11) and our definition of q3- we have 

and 

dGj-^ej-^dE+fj-i 

8Gj=ejW8E+fjV\ 

(2) (3.16) 

where the superscript "2" refers to the lower element of 
the e, /two-vectors. Substituting (3,16) into (3.14) and 
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solving for E, we arrive at 

g-Mrj-rj-: 

8E=-
*f*-im-fr (2) 

e / w + [ G ! j _ 1 ( r j - f / _ 0 ( d X / i f i ) - « / - i w ] t f - X ( , ^ r ' - i ) 
(3.17) 

The iteration process may be summarized as follows: 
(1) From the ^th approximation to Fj, Gj, and E, com
pute the elements of Aj+%, Bj+±, Cj and Qj+% for 
0<j<J— 1. (2) Using (3.12) compute ei, e2, •••, £ j ; 
/i> /a, •*•> / / u s m S 0o=/o=O. (3) jCompute dE by 
(3.17). (4) Compute the corrections 8Fh dF2, • • •, &FV, 
#?i, 5G2, --,8Gj from the first of (3.11), (5) Compute 
the p+ 1st approximations by 

E*+1=EP+5EP 

FjV+^FjV+dF* 
0<j<J. 

This process is repeated until all the unknowns satisfy 
the inequality 

\5xkv/xkv
+1\<T2, A = l , 2, • • • , # 

and 18E/E[ < 7 \ for # A > T3. For xk<Tz we do not make 
a test. 

In addition to satisfying the above tolerance tests, we 
must also have chosen rj such that the asymptotic 
solution is indeed valid. To check this we compute 

and require that 

and that 

| ( ^ _ i - ^ - i ) / F / - i | < r i 

\(GJ-I-GJ-I)/GJ-I\<TI. 

If these inequalities are satisfied we are finished. If they 
are not, we advance / by 10 and resolve the equations. 
This procedure is repeated until all tests are satisfied. 

In order to normalize our solutions we require that 

Jo 
N2 ry

+1(F2+G2)dr=l = N2 H(r)dr. f 
Jo 

This quadrature was performed by BesselPs formula 

f H(r)dr= Z CjiHj+Hj-^+j: Hj+ f H(r)dr 

where the Cj take on the values 

Co l=0.32986, 67=1.32083, C2
1=0.76667, 

= 0.98125. 

The final values of the wave functions for the bound 
state are given by 

Fj=Nr^-lFj 

Gj=Nry~1Gj 
0<j<J. 

In the results reported here we have taken Ti= 10~4, 
JT2=10~ 5 , r 3 =10~ 5 . The actual iteration error is much 
smaller since the tests involve comparison with values 
from the preceding iteration. In fact, since Newton's 
method doubles the number of significant figures when 
within the linear range, iteration errors are probably 
less than 10~8. 

B. The Continuum-State Wave Equations 

The continuum-state wave equations 

( e + 1 + „ ) / « - L(dg,/dr)+ (1+zc) (g„A)]=0 

( e - 1 + <p)g*+Z(.dfK/dr)+ ( 1 - K ) (fjr)1=0 
(3.18) 

constitute an initial value problem since e, the energy of 
the ejected electron, is determined by the sum of the 
incident photon energy and the energy of the bound 
state determined in the previous section. 

As in the case of the bound state, it is convenient to 
make a change of variables here also. 

Equations (3.18) then become 

( e + l + <p)fK- ZdgK/dr+ [(Y+K)A]f J = 0 

( € - 1 + <p)gK+LdfK/dr+l(7-K)/r']fJ = 0 
(3.19) 

where fK and gK are finite at r=Q. 
In a manner similar to the bound state we determine 

at r=0 for a Coulomb potential a/r 

or 

a /c(0)=(7+*)&(0) (3.20a) 

a & ( 0 ) = - ( y - K ) / * ( 0 ) . (3.20b) 

Thus y2—K2—a2 and since Eqs. (3.20) are linear we 
may again choose gK(0) arbitrarily equal to 1. We then 
may determine /*(0) from either of (3.20). In practice 
we use (3,20a) for tc>0 and (3.20b) for K < 0 to insure 
the greatest accuracy. 

In order to normalize the continuum solution prop
erly, it is necessary to find the asymptotic solution. This 
is done by matching the solutions of (3.18) with <p not 
zero to general solutions of (3.18) with <p equal to zero, 



i £ - S H E L L P H O T O E L E C T R I C C R O S S S E C T I O N S A905 

and evaluating the asymptotic behavior from the zero- <p 
solutions beyond the range of the potential. 

Let the matching of solutions be done at a point ro. 
L e t £ 2 = e 2 - 1 . Then 

XlA+J^M+A^J-^ipn)-] 

««fro) = [(€+l)/#ro]1/2 
(3.21) 

These two equations serve to determine the constants 
A+ and A— The asymptotic behavior of fK and gK is then 
determined by the asymptotic form of the Bessel 
functions. 

/ 2 ( e - l ) y / 2 l r / TK\ 

/ 7TK 7 T \ ~ | 

/ 2 ( e + l ) \ ^ l r / K i \ 
(3.22) 

(Pr+'i)] -^4_cosi 

The normalization factor A and the phase shift 8K are 
given by 

A=(A+2+Ajyi2, 

cos8K=A+/A, (3.23) 

-sm8K=(-i)<A-/A. 

The asymptotic forms of fK and gK are then 

/2{e-\)\1'2 A / KIT \ 
Mr)~[ ) " coslpr [-8KJ , 

/ 2 ( e + l ) \ 1 / 2 ^ / KIT \ 
gK(r)~l J - s m l ^ r \-8K J . 

(3.24) 

In using this with a true Coulomb potential, the 
phase shifts 8K will not become constant with increasing 
r, but rather will continue to increase, behaving like 
(ae/p) ln2pr-\- constant. This must be taken into ac
count when checking whether the asymptotic form is 
attained. For potentials that die out more rapidly than 
the Coulomb potential, the tVs should become constants 
in r. 

The numerical solution of either (3.18) or (3.19) is 
straightforward except near r=0. Because of the 
singularity exhibited in (3.18) at r=0 we use (3.19), but 
even here we have a starting problem. 

Let us write Eqs. (3.19) in the vector notation 

where coK has components fKy gK and where 

7 — j 

AK= 
/ a\ (T+K) 

(3.26) 

Consider now the finite difference representation of 
(3.25) based on the Euler approximation 

{uj+i—u>3)/h=AjUj, j>0, (3.27) 

where h=rj+i—rj=a, constant, and where we have for 
simplicity dropped the subscript K. Equation (3.27) is 
restricted to j>0 since the elements of Aj are singular 
for j—0. In practice coi would be determined from coo by 
a series expansion. Equations (3.27) may be written 

coy+i= (I+hAj)u>j. 

The first-order error equation will then be 

§coy+i=(/+My)5coy, (3.28) 

where we have neglected errors in Aj. Equation (3.28) 
may be simplified to 

Scoy-f-i=Bj8o)j 

with 

Bi 
jh 

\h(e+l+ 

-(y-K) 

jh/ 

4 ( 6 - 1 + — ) 
V jh/ 

K T + K ) 

jh 

(3.29) 

(3.30) 

and where we have replaced r by ro+jh= jh. 
If individual errors in coy are to remain bounded, we 

must require that the eigenvalue of the matrix Bj be less 
than or equal to 1 in absolute value. The eigenvalues of 
(3.30) are determined from 

1 X - M e - 1 + — ) 
j V jh/ 

A(€+I+—) 
I V jh/ 

(y+K) 
-0. 

ooK' = AKooK (3.25) 

jh* J 

The argument holds in the limit of h —> 0 which leads to 

[ 1 - ( 7 - * 0 / i - X ] [ l - ( 7 + / 0 / i - A ] + a 2 / i 2 = 0 . (3.31) 

Remembering that y2=n2—a2 we solve (3.31) to give 
\ = 1 , l—(2y/j). Since we require | X | < 1 we have 
—1<1— (2y/j)<l. Now 7 and j are always greater 
than zero and therefore the right-hand inequality is 
always satisfied. The left-hand inequality will be 
satisfied if j>y. The conclusion is that if we want 
errors to decrease in the solution of (3.19) by numerical 

' integration, we must begin the integration at a value of 
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j>y. The maximum value of y in our calculations was 
20 corresponding to K= ± 2 0 and it is therefore necessary 
to use the starting series described below for the first 20 
steps. Although the above analysis is applied to the 
simple Euler method it leads to the same result where 
applied to the Runge-Kutta method. In fact, it was 
using the Runge-Kutta method for starting that led to 
the observations of the error growth and the analysis.12 

I t has been pointed out to the authors by J. Scofield13 

that the modified Euler scheme, co/+i==[(/+JMy+i)/ 
(/—|My+i)]coj has eigenvalues X = l , [ 1 — 7 / ( i + i ) ] / 
[ 1 + T / ( i + f ) ] in the limit as h •—»0. Therefore errors in 
this scheme will be bounded since y > 0 . 

The power-series solution to (3.19) around the point 
rn is of the form 

/(r) = £ * ( r - r n ) V * = 0 , 1 , 2 , -

g(r) = XK(r-rny, f=0 , 1, 2, •• 
(3.32) 

Substituting into (3.19) we arrive at the recursion 
relations 

rn(i+2)bi+2+ (i+l)bi+i+ (y+K)bi+1 

— [ («+ l)rn+a\ci+i— (e+ l )c»=0, 

rn(i+2)ci+2+ (i+ l)ci+i+ (y—K)ci+i 
+ C ( € - l ) f n + a ] J ^ i + ( e - 1 ) ^ = 0 , 

where co=f(rn), bo=g(rn). These relations allow the 
determination of the a, bi for i > 0 for successive expan
sions about r w =0 , rn=h, rn=2h, • • •, rn=jh. Since we 
are always expanding about the previous point, 
r—rn=h. 

The series solutions (3.32) and similar equations for 
the derivatives of / and g were computed out to j=JJ. 
The series at each j were terminated when the percent
age error in / ' and gf was less than one part in 108. Using 
the functions and derivatives thus determined, the 
numerical solution of (3.32) was then continued by the 
Runge-Kutta method. In the case of a general potential 
where the series solution is not easily arrived at, we plan 
using the modified Euler scheme for starting the 
integration. 

At this point in j we switched back to using / and g 
instead of / a n d g so that our numbers would not become 
too small. In addition it was necessary to add a scale 
factor, SF, in both / and g in certain cases to keep 
numbers within machine limits. Using the values 

gjj=gjj(SF'rJj)y-1 

jjjf = fj/ (SF • rjj)^+ (y- \)fjj/fJi 

gj/=gj/(SF-rjj)T-i+(y-t)gjj/rjj, 

the numerical integration of (3,32) was continued by the 
standard Runge-Kutta method. 

Although our analysis in this section indicates that 
we should take J J =20, we actually used / / = 10. This 
allowed small errors to appear in the normalization 
factors and wave functions for K> 10. These errors were 
of the order of 4 % in the normalization factor at K= 16. 
However, the high values of K contributed very little to 
the cross sections and the cross sections show no error 
due to using / / = 10 instead of 20. 

We require / and g to be normalized such that 

/ • 

/e-iy'2 1 / W \ 

(ir) ^T""+ s ) 
/ e + i y / 2 1 / IT \ 

g M ) — sin pr \-d J . 
\ 2e / pr \ 2 / 

(3.33) 

From (3.23) and (3.33) we then have the following rela
tion for the normalization. factor Nil Ni=2A(e/ir)112 

where A is determined from (3.21) and the first of (3.23). 
The phase 8 must now be determined. For a potential 

which falls off more rapidly than 1/r the phase will be 
given by (3.23) as 5=arctan|^4_/^+I > but for the pure 
Coulomb potential §=arctan|^4_/^4+ | — (ae/p) \nlpr. 

In the program reported here we have computed A 
at each step of the integration and required that 

Aj+iQ—Aj 

^+10+^4/ 
< 7 V 

12 This difficulty had been observed and resolved previously by 
Levee in a problem in controlled thermonuclear reactions. 

13 J. Scofield (private communication). 

I t turned out that for the very small T4 chosen, the 
integration was always carried out to the predetermined 
maximum at r= 120. At this point the normalizations 
and phases were determined. 

IV. ACCURACY OF THE NUMERICAL CALCULATION 

We have seen that we will have all the information 
needed to specify the properties of 5-state photoeffect 
when we have calculated the quantities R^ given by 
Eq. (2.20). We have not discussed how many of these 
quantities we need to calculate, i.e., the convergence 
properties of the series in Eqs. (2.24) and (2.27). We 
follow usual practice, and will judge the convergence by 
the size of successive R^. Practical considerations force 
us to choose a limit for \K\ in advance, since the methods 
employed for calculating functions and organizing the 
numerical program for machine purposes depend on 
this choice; in the present paper we consider | K \ < 20. 

Then first of all the calculation of a given RK requires 
bound-state radial functions FKy GK, continuum radial 
functions fKi gK, and spherical Bessel functions ji(kr). 
Also, in calculating angular distributions we will need 
the associated Legendre functions Pjm(cos#), for m = 0 , 
1,2. The accuracy of the calculations of these components 
of the general program are discussed in separate sub
sections. We can then estimate the accuracy with which 
each RK has been computed, and the accuracy this 
implies for the cross sections. And we must also judge 

file:///nlpr
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the error which has been made due to the restriction 
| /c |<20. 

Checks for the component programs will be discussed 
separately. A number of checks are available for the final 
results: We can compare with analytic results for low Z 
and we can compare with numerical results which have 
previously been obtained for photoelectric cross sections. 
These comparisons are made in the subsequent sections 
where we present our results. In all cases the proper 
agreement was obtained, so that we have full confidence 
in our numerical program. I t should perhaps also be 
mentioned that with the present program some ten 
minutes of IBM-7090 time were required to obtain the 
differential and total cross sections and polarization 
correlations for a given choice of element and energy; it 
is expected that further improvements in the program 
will appreciably reduce this figure. 

A. Component Programs 

i. Bound-State Wave Functions 

The accuracy of the bound-state calculation can be 
tested for the pure Coulomb potential by comparison 
with analytic results. I t is particularly simple to check 
the eigenvalue and the normalization of a calculated 
wave function. The energy levels are obtained with 
considerable accuracy. However, the normalization 
coefficient, i.e., the constant which multiplies the known 
small r dependence, probably gives a better indication 
of the over-all accuracy of the wave function. For given 
h=ri+i—ri, the error in mormalization increases with Z. 
With h=0.05, the smallest value used, the error is 
negligible for Z = 2 6 or 50 but 0.4% for Z = 8 2 and 
0.6% for Z=92. To obtain 1% accuracy in the cross 
sections for heavy elements we have taken results for 
^ = 0 . 1 , 0.075, and 0.05 and extrapolated to h=0. [Note: 
I t has since been established that these small errors 
result from a minor error in programming; once this is 
corrected, the error in bound-state normalizations be
comes completely negligible.] 

ii. Continuum-State Wave Functions 

The two parameters of a continuum-state solution 
which are easily compared with the analytical results of 
the pure Coulomb potential are normalization and 

TABLE I. Accuracy of continuum normalizations. 

Low Z 

HighZ 

Energy\«: 
( M e V ) \ 
0.354 
1.131 
0.200 
0.354 
0.600 
1.131 
1.5 
2.0 

+ 1 
(%) 
0.01 
0.01 
0.5 
0.1 
0.07 
0.03 
0.02 
0.2 

+5 
(%) 
0.02 
0.03 
0.7 
0.2 
0.10 
0.05 
0.03 
0.2 

+9 
(%) 
0.4 
0.4 
1.0 
0.5 
0.45 
0.4 
0.3 
0.4 

+ 15 
(%) 
4.0 
4.5 
5.0 
4.5 
4.4 
4.2 
4.0 
4.2 

TABLE II. Accuracy of phase shifts; errors in radians and percent. 

EnergyX* 
( M e V ) \ + 1 +5 +9 +15 

LowZ 0.354 0.0004(2%) 0.0004(0.1%) 0.0005(0.1%) 0.0009(0.1%) 
1.131 0.0015(10%) 0.0016(0.5%) 0.0014(0.3%) 0.0014(0.2%) 

HighZ 0.200 0.0035(oo) 0.0054(0.3%) 0.0001(0.0%) 0.0021(0.1%) 
0.354 0.0030(1.5%) 0.0005(0.0%) 0.0019(0.1%) 0.0034(0.2%) 
0.600 0.0007(0.2%) 0.0001(0.0%) 0.0006(0.1%) 0.0012(0.1%) 
1.131 0.0011(0.3%) 0.0009(0.1%) 0.0011(0.1%) 0.0014(0.1%) 

phase. The accuracy of the normalizations calculated 
with h=0.05 for some typical partial waves in low-Z 
(26) and high-Z (82 and 84) elements are shown for 
various energies in Table I. The errors in the higher 
partial waves are nearly independent of energy (away 
from threshold) and Z, but increase rapidly with K. 
These arise from the use of the same switching point 
JJ= 10 from power series to numerical integration for 
all K. Except at the highest energy (2 MeV), the errors 
are not sensitive to choices of h in the range from 0.05 
to 0.1. The error in normalization also increases rapidly 
as the threshold energy is approached. This type of 
error is insensitive to h and may be connected with the 
very long periods of low-energy continuum states. In 
Table I I we give the analogous errors in phase shifts, 
expressed both in radians and in percent. 

Hi. Spherical Bessel Functions 

The spherical Bessel functions ji, 0 < / < 2 0 , were 
computed by the method of Corbato and Uretsky14 and 
were checked against the NBS Tables15 for selected 
values of /. The errors were less than one part in 106. 

iv. Legendre Polynomials 

The Legendre and associated Legendre functions 
were computed in double precision arithmetic directly 
from the polynomials given by Tallquist.16 These were 
compared with double precision values computed from 
the recursion relations and found to agree to at least one 
part in 1012. Rough comparisons can be made to the 
tables of Mursi17 and NBS.18 

B. The Main Program 

i. Partial-Wave Integrals RK 

The errors in an RK are due first to the errors of the 
component programs and second to the errors of the 

14 F. J. Corbat6 and J. L. Uretsky, J. Assoc. Comp. Mach. 6, 366 
(1959). 

15 National Bureau of Standards, Tables of Spherical Bessel 
Functions (Columbia University Press, New York, 1947), Vols. I 
and II . 

16 H. J. Tallquist, Acta Soc. Sci. Fennicse, Nova Series A, Tome 
II, No. 4 (1936); Tome II, No. 11 (1938). 

17 Z. Mursi, Tables of Legendre Associated Functions (E. and 
R. Schindler, Cairo, 1941). 

18 National Bureau of Standards, Tables of Associated Legendre 
Functions (Columbia University Press, New York, 1945). 
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TABLE III . Regions contributing to partial-wave integrals. 

z 
26 

50 
92 
84 

82 

Energy\/c 
( M e V ) \ 

0.354 
1.131 
0.354 
0.208 
0.354 
1.131 
1.1368 
2.0 
2.754 

+1 
84 
58.5 
41 
19 
20 
22 
21.5 
19.5 
22.5 

+5 
80 
63 
45 
28.5 
26 
25 
23 
25 
24.5 

+9 
108 
78.5 
50 
35 
31.5 
27 
27 
26 
25 

+ 15 

(does not contribute) 
89.5 

(does not contribute) 
(does not contribute) 
(does not contribute) 

31 
28.5 
27 
25.5 

integration procedures. The errors in integration arise 
from the choice of h and rmax, the upper limit of the 
integration. 

Table I I I summarizes, for representative parameters, 
the distance in r which it was necessary to integrate to 
hopefully reduce the residual contribution to less than 
one part in 106. The needed distance increases slowly 
with increasing K; in heavy elements it is nearly inde
pendent of energy and is determined by the decreasing 
exponential of the bound-state wave function. Since this 
exponential scales as Z the required distance greatly 
increases as Z decreases. In light elements this has the 
consequence that an energy dependence persists in the 
energy range of concern, and the rapid oscillations of a 
high-energy continuum-state work to reduce the needed 
distance.19 Since such a stringent criterion was applied in 
the table, it is possible to obtain satisfactory results from 
the present calculation for a Z as low as 10 or 13, even 
with the restriction r m a x < 120 required in the machine 
program. 

The error in integration arising from the choice of h 
can be estimated by noting the change in the values of 
RK resulting from changes in h and subtracting out the 
portion of this which is due to change in component 
programs with h. As already noted, up to 1.5 MeV, the 
only component program which is sensitive to choices 
of h in the range 0.05-0.10 is the bound-state wave func-

TABLE IV. Number of K'S needed for accuracy to one part in 10w. 

E\n 

0.140 
0.200 
0.279 
0.354 
0.400 
0.662 
1.131 
1.1368 
2.0 
2.754 

1 

2 
. 3 

3 
4 
4 
5 
7 
8 

11 
14 

2 

3 
4 
4 
5 
6 
8 

12 
13 

~17 

3 

4 
5 
6 
7 
8 

10 
15 
16 

4 

4 
6 
7 
9 
9 

13 

5 

5 
7 
8 

10 
11 
14 

6 

5 
8 
9 

12 
13 

19 It should be noted that the distance required for very high 
accuracy has a different dependence on parameters from the dis
tance which characterizes the main region of the integrand. It is 
the latter distance which is discussed in the various analytic 
approximations. 

tion. When the estimated error from this source is 
subtracted, the residual error to be attributed to error 
from h in integration is generally small and, with one 
exception,20 completely independent of K. The typical 
error begins to increase at higher energies: the difference 
between RK of ^=0.05 and 0.10, still negligible at 662 
keV, is about 0.4% at 1.131 MeV, both for Z = 2 6 and 
82, and 1.5% at 1.5 MeV. 

ii. Number of K'S Contributing to Cross Section 

The number of K'S needed to determine the total cross 
section to any desired accuracy increases with energy, 
but it is almost independent of Z. One or two more K'S 
are needed to obtain the same accuracy for Z = 2 6 as 
for Z = 8 4 . In Table IV we summarize as a function of 
energy (for heavy elements) the number of K'S needed to 
obtain an accuracy of one part in 10n. The restriction 
to | K | < 20 results in a limitation to energies below about 
2 MeV if it is desired to obtain the total cross section 
to 1%. 

TABLE V. Estimates of total error in numerical calculation. 

Error in ertotai 
Energy (%) 

Low Z 0.354 0.2 
1.131 0.6 

HighZ 0.200 1.1 
0.354 0.5 
0.600 0.5 
1.131 0.8 
1.368 0.8 
2.00 2.0 

Hi. Estimate of Total Error in Cross Sections 

We assume that a fit is made to the results for differ
ent h and extrapolated to h=0, and we assume that, in 
agreement with our analysis, this renders errors associ
ated with h (bound-state normalization, integration, 
etc.) negligible, i.e. 0 .1%. Then the error in RK is 
dominated by the error in the continuum wave function. 
From this estimate of the error in each RK, and from the 
information just presented on the contribution of each K 
to the cross section, we can get an estimate of the total 
error of the cross section. Some rough estimates of this 
kind are summarized in Table V. The main conclusion 
is that the present calculation obtains total cross sec
tions accurate to 0.8% in the energy range from 300 to 
1400 keV; the accuracy decreases rapidly toward 
threshold and at high energies. 

V. TOTAL CROSS SECTIONS 

Theoretical predictions for the total i^-shell photo
electric-effect cross section have been based on four 

20 The exception is for K=1, for which RK changes by as much as 
0.5% between ^=0.05 and 0.10. 
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TABLE VI. Total cross sections for Z=13 , 26, 50, 84, in barns. 

z 
( M e V ) \ 

0.3543 
0.662 
1.131 
1.5 
2.0 

13 
This 
work 

0.01543 
0.00289 
0.00091 
0.00054 
0.00033 

26 
This 
work 

0.3885 
0.0754 
0.0237 
0.0140 
0.0086 

Hulme 
et al. 

0.39 

0.023 

50 
This 
work 

7.06 
1.455 
0.462 
0.271 
0.164 

Hulme 
et al. 

7.1 

0.46 

84 
This 
work 

60.6 
13.87 
4.54 
2.65 
1.57 

Hulme 
et al. 

60.2 

4.61 

TABLE VIII. Comparison of total cross sections (in barns) for 
Z = 82, from the NBS tables, an extrapolation of Pratt, and the 
present calculation. 

E 
(MeV) 

1.131 
1.332 
1.5 
2.0 

NBS 

4.37 
3.24 
2.65 
1.8 

Extrapo
lation 

4.07 
3.03 
2.49 
1.56 

Present 
calculation 

4.10 
2.99 
2.39 
1.42 

main calculations: (1) The exact nonrelativistic solution 
of the problem, usually associated with Stobbe,21 

(2) Sauter's relativistic calculation,6 valid to lowest 
order in Za/($, (3) numerical calculations of Hulme 
et al.22 for a few selected energies and elements, (4) the 
high-energy limit of the relativistic problem for arbi
trary Z as given by Hall.23 Extrapolation procedures, 
based on these four results, can be used to estimate the 
cross section for arbitrary Z and energy; tables of these 
predictions have been given by Grodstein24 (NBS 
tables). Experimental results have generally yielded 
satisfactory agreement with these tables. 

Since 1955 there has been substantial improvement in 
all four of these calculations, and one of them has 
actually been found to contain an error. Namely, 
although Hall's expression for the high-energy limit in 
the form of a double integral is correct, the analytic 
formula with which he approximated the integral is not, 
and overestimates the cross section by a factor of two in 
heavy elements. The exact high-energy limit was ob
tained numerically by Pratt7 and later confirmed by 
Hall25; as already noted, Eq. (2.7) gives a fairly good 

TABLE VII. Total cross sections for Z = 82, 92, in barns. 

E 
(MeV) 

0.120 
0.200 
0.300 
0.400 
0.500 
0.600 
0.662 
0.900 
1.131 
1.332 
1.5 
2.0 

Z-
This 
work 

239 
84.0 
40.7 
23.7 
15.6 
12.5 
6.49 
4.10 
2.99 
2.39 
1.42 

= 82 

HNO 

921 
241 
83.6 
40.5 
23.7 
15.5 

NBS 

950 
236 
80.2 
40.4 
23.1 
15.3 
12.4 
6.68 
4.37 
3.24 
2.65 
1.8 

E 
(MeV) 

0.132 
0.140 
0.208 
0.279 
0.412 
0.662 
0.900 
1.131 
1.332 
1.5 
2.0 

Z 
This 
work 

319 
155 
59.9 
20.4 
10.7 
6.78 
4.93 
3.95 
2.33 

= 92 

HNO 

1026 
887 
324 
154 
59.5 
20.2 

NBS 

1100 
942 
334 
155 
59.8 
20.7 
11.2 
7.38 
5.5 
4.5 
2.9 

21 M. Stobbe, Ann. Physik 7, 661 (1930). 
22 H. R. Hulme, J. McDougall, R. A. Buckingham, and R. H. 

Fowler, Proc. Roy. Soc. (London) A149, 131 (1935). 
23 H. Hall, Rev. Mod. Phys. 8, 358 (1936). 
24 G. W. Grodstein, U. S. Department of Commerce, National 

Bureau of Standards Circular 583 (U. S. Government Printing 
Office, Washington, D. C., 1957); see also R. T. McGinnies, 
NBS Supplement to Circular 583 (1959). 

25 H. Hall, University of California, Lawrence Radiation Labo
ratory Report UCRL 5947-T (unpublished). 

analytic representation. It is then at first hard to under* 
stand why the extrapolation between Sauter and Hall is 
in good agreement with Hulme. The work of Gavrila26 

and Nagel,27 who extended Sauter's result to next order 
in (Za/f$), explains the puzzle. Hall's error essentially 
involved omission of the factor (—47ra/15) in Eq. (2.7), 
but the energy dependence of this term is such that it 
is large only at very high energies. [Recently, a compli
cated analytical expression for still another order in 
Za//3 has been given by Gorshkov and Mikhailov.28] 

iT-shell photoefTect at threshold has been calculated 
for the relativistic problem, both analytically and 
numerically, by Nagel and Olsson.5 In the low-energy 
region screening effects are expected to be important, 
however, and this has recently been examined in the 
nonrelativistic problem by Cooper.29 Since, as already 
noted, the numerical techniques of the present paper 
require modification at low energies, we will not discuss 
this energy region further. 

The numerical calculations of Hulme et al. provided 
the reference points which Sauter-Stobbe and Sauter-
Hall extrapolations are forced to fit. The accuracy of 
Grodstein's predictions for intermediate energies rests 
almost entirely on the accuracy of these numerical re
sults obtained for 0.3543 and 1.131 MeV, estimated at 
4% for heavy elements and 8% for lighter elements. 
Since this is the main energy region of experimental 
interest, it is important to verify and extend these 

TABLE IX. Comparison with experimental results (see Refs. 
32-34) for i£-shell total cross sections (in barns). 

Experimenter 

Seeman 
Missoni 
Hultberg and 

Stockendal 
Hultberg and 

Stockendal 
Bleeker, Goudsmit 

and De Vries 

Element 

Pb 
Au 
U 

U 

Pb 

Energy 
(keV) 

511 
662 

1173 

1332 

1332 

Experimental 
result 

23.4 ±0.7 
10.2 ±0.3 
7.2 ±0.5 

5.4 ±0 .3 

3.24±0.13 

Present 
theory 

22.5 
10.5 
6.32 

4.93 

2.99 

26 M. Gavrila, Phys. Rev. 113, 514 (1959). 
27 B. Nagel, Arkiv Fysik 18, 1 (1960). 
28 V. G. Gorshkov and A. I. Mikhailov, Zh. Eksperim. i Teor. Fiz. 

43, 991 (1962) [English transl.: Soviet Phys.—TETP 16, 701 
(1963)]. 

29 J. W. Cooper, Phys. Rev. 128, 681 (1962). 
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TABLE X. K-shell angular distributions for Z= 13, 26, 50, 84 in barns/steradian (when multiplied by indicated scale factor and by 1490). 

V Z 

\E (keV) 
0\Scale 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
100 
105 

no 115 
120 
125 

\ Z 
\E (keV) 
0\Scale 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 

13 
354 
IO"6 

1.0 
2.8 
4.1 
4.9 
5.3 
4.9 
3.9 
2.9 
2.2 
1.65 
1.20 
0.86 
0.63 
0.46 
0.34 
0.26 
0.19 
0.140 
0.101 
0.076 
0.057 
0.042 
0.033 
0.027 
0.020 

1131 
10~6 

0.42 
0.95 
0.90 
0.58 
0.33 
0.195 
0.119 
0.075 
0.048 
0.031 
0.020 
0.015 
0.012 
0.008 

662 
10"6 

0.5 
1.4 
1.7 
1.6 
1.3 
0.9 
0.58 
0.37 
0.26 
0.17 
0.11 
0.08 
0.06 
0.04 
0.028 
0.020 
0.016 
0.012 

13 
1500 
io-6 

0.4 
0.79 
0.63 
0.31 
0.15 
0.09 
0.061 
0.034 
0.019 
0.014 
0.011 
0.007 

26 
354 
10~4 

0.0028 
0.19 
0.62 
1.04 
1.27 
1.28 
1.15 
0.95 
0.746 
0.567 
0.422 
0.311 
0.228 
0.168 
0.123 
0.091 
0.067 
0.050 
0.037 
0.028 
0.021 
0.0158 
0.0120 
0.0091 
0.0069 
0.0052 

2000 
io-< 

0.3 
0.6 
0.43 
0.16 
0.08 
0.05 

J 

0.030 
0.015 
0.100 
0.008 

662 
10~5 

1.4 
3.6 
4.4 
4.1 
3.3 
2.3 
1.50 
1.00 
0.71 
0.48 
0.30 
0.21 
0.16 
0.116 
0.077 
0.056 

1131 
10-5 

0.06 
1.0 
2.4 
2.36 
1.50 
0.83 
0.50 
0.33 
0.205 
0.122 
0.081 
0.060 

26 
1500 
10~5 

0.05 
1.0 
2.0 
1.60 
0.80 
0.39 
0.24 
0.17 
0.091 
0.053 

354 
10~3 

0.0155 
0.280 
0.92 
1.58 
2.00 
2.10 
1.95 
1.67 
1.36 
1.07 
0.820 
0.621 
0.468 
0.351 
0.264 
0.199 
0.150 
0.113 
0.086 
0.066 
0.051 
0.039 
0.030 
0.024 
0.019 
0.015 

2000 

io-* 

0.034 
0.9 
1.6 
1.04 
0.41 
0.19 
0.126 
0.079 
0.040 
0.024 
0.014 

50 
662 
IO"3 

0.033 
0.22 
0.59 
0.79 
0.76 
0.598 
0.435 
0.306 
0.211 
0.144 
0.098 
0.069 
0.049 
0.035 
0.026 
0.019 
0.0142 
0.0109 
0.0083 
0.0064 
0.0050 
0.0040 
0.0032 
0.0026 
0.0020 
0.0017 

1131 
10"4 

0.4 
2.0 
4.3 
4.3 
2.8 
1.6 
1.02 
0.67 
0.42 
0.27 
0.18 
0.13 
0.095 
0.069 
0.051 
0.039 
0.031 
0.024 
0.019 

50 
1500 
IO"4 

0.4 
2.0 
3.7 
2.9 
1.5 
0.78 
0.49 
0.32 
0.19 
0.119 
0.085 
0.064 
0.045 
0.032 
0.025 

2000 
10~4 

0.36 
1.8 
3.0 
1.87 
0.76 
0.37 
0.24 
0.15 
0.086 
0.056 
0.043 
0.030 
0.021 
0.015 
0.012 

354 
IO"2 

0.14 
0.43 
0.78 
1.06 
1.23 
1.26 
1.20 
1.08 
0.93 
0.78 
0.64 
0.51 
0.41 
0.33 
0.26 
0.21 
0.17 
0.13 

84 
662 
IO-3 

0.79 
1.91 
3.93 
5.20 
5.50 
4.99 
3.98 
2.98 
2.22 
1.64 
1.19 
0.89 
0.66 
0.49 
0.37 
0.29 
0.23 
0.17 
0.14 

84 
1500 
IO'3 

1.0 
2.0 
3.0 
2.43 
1.41 
0.81 
0.51 
0.32 
0.21 
0.15 
0.105 
0.075 
0.058 
0.047 
0.036 

1131 
10-3 

0.96 
1.98 
3.40 
3.40 
2.47 
1.62 
1.07 
0.71 
0.47 
0.33 
0.23 
0.168 
0.125 
0.097 
0.076 
0.058 
0.046 
0.038 
0.032 

2000 
IO"3 

1.0 
1.9 
2.6 
1.6 
0.72 
0.39 
0.24 
0.146 
0.099 
0.071 
0.047 
0.034 
0.030 
0.023 
0.016 

calculated points, and this is the purpose of the present 
section. 

While the present work was in progress a new 
numerical calculation was reported by Hultberg, Nagel? 
and Olsson (HNO).2 Like the work of Hulme et at., the 
method used applies only to the pure Coulomb poten
tial; HNO treated two heavy elements in the energy 
range 0.120-0.662 MeV. Moderately good agreement 
was obtained with the values derived from the NBS 
tables, confirming the low-energy high-Z point of 
Hulme et al*° 

30 It should also be noted that in principle, another series of 
photoeflect total cross sections is available in the numerical calcu
lations on the coherent scattering of photons from i^-shell electrons 
carried out by Brown and collaborators: G. E. Brown, R. E. 

The iT-shell total cross sections obtained in the 
present numerical calculations are summarized in Tables 
VI and VII. The Z's of Table VI corresponds to those of 

Peierls, and J. B. Woodward, Proc. Roy. Soc. (London) A227, 51 
(1954); S. Brenner, G. E. Brown, and J. B. Woodward, ibid. A227, 
59 (1954); G. E. Brown and D. F. Mayers, ibid. A234, 387 (1955); 
A242, 89 (1957). As the authors note, the photoeffect cross sections 
can be obtained from the imaginary part of the scattering ampli
tude in the forward direction for the coherent process, and results 
are presented for Hg at photon energies of 0.32, 0.64, 1.28, and 
2.56 (all in units of mc2). A similar calculation was later reported by 
H. Cornille and M. Chapdelaine, Nuovo Cimento 14, 1386 (1959) 
for photons of energy 5.12 mc2 on Hg. Unfortunately, results of 
these papers pertaining to the photoeflect are not presented as 
cross sections. We do not wish to now enter into a detailed dis
cussion, but if our interpretation of these results is correct they are 
in fair accord with our numerical work and the highest energy 
results show the suppression from previous values reported here. 
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TABLE XL X-shell angular distributions for Z=82, 92 in barns/steradian (when multiplied by indicated scale factor and by 1490). 

V Z 

\ J E (keV) 
0\Scale 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 

\ Z 

\ £ (keV) 
0\Scale 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

200 
lO"2 

0.0006 
0.132 
0.499 
1.02 
1.61 
2.16 
2.59 
2.88 
3.02 
3.02 
2.91 
2.72 
2.48 
2.22 
1.96 
1.71 
1.47 
1.26 
1.07 
0.91 
0.766 
0.644 
0.54 
0.45 
0.38 
0.31 

900 
lO"3 

0.75 
1.71 
3.34 
3.89 
3.32 
2.46 
1.73 
1.20 
0.82 
0.57 
0.41 
0.294 
0.216 
0.164 
0.126 
0.096 
0.075 
0.061 
0.050 

300 
lO"2 

0.2 
0.5 
0.8 
1.1 
1.36 
1.53 
1.54 
1.44 
1.28 
1.10 
0.93 
0.78 
0.64 
0.53 
0.43 
0.35 
0.28 
0.23 
0.183 
0.148 
0.121 
0.101 
0.083 
0.068 
0.056 

1131 
lO"3 

0.84 
1.79 
3.12 
3.11 
2.24 
1.46 
0.96 
0.64 
0.423 
0.291 
0.207 
0.148 
0.110 
0.085 
0.066 
0.051 
0.040 
0.033 
0.028 

82 
400 
lO"2 

0.0289 
0.135 
0.397 
0.688 
0.900 
0.987 
0.964 
0.871 
0.746 
0.616 
0.497 
0.395 
0.311 
0.244 
0.190 
0.149 
0.117 
0.092 
0.073 
0.058 
0.047 
0.038 
0.031 
0.026 
0.021 
0.018 

82 
1332 
10-3 

0.90 
1.84 
2.94 
2.57 
1.63 
0.98 
0.62 
0.402 
0.264 
0.183 
0.129 
0.092 
0.070 
0.056 
0.042 

500 
lO"2 

0.0414 
0.143 
0.376 
0.600 
0.717 
0.717 
0.642 
0.536 
0.428 
0.333 
0.255 
0.194 
0.148 
0.112 
0.086 
0.066 
0.051 
0.040 
0.031 
0.025 
0.0200 
0.0163 
0.0134 
0.0111 
0.0095 
0.0082 

1500 
lO"3 

0.90 
1.8 
2.76 
2.22 
1.27 
0.73 
0.46 
0.290 
0.189 
0.133 
0.093 
0.066 
0.051 
0.042 
0.031 

600 
lO"3 

0.523 
1.51 
3.63 
5.33 
5.82 
5.34 
4.43 
3.47 
2.63 
1.96 
1.45 
1.07 
0.80 
0.60 
0.455 
0.348 
0.269 
0.209 
0.166 
0.133 
0.108 
0.088 
0.073 
0.062 
0.053 
0.046 

2000 
lO"3 

0.87 
1.75 
2.3 
1.4 
0.65 
0.35 
0.22 
0.131 
0.088 
0.063 
0.042 
0.030 
0.026 
0.020 
0.014 

662 
lO"3 

0.577 
1.55 
3.56 
4.97 
5.16 
4.50 
3.58 
2.71 
2.00 
1.46 
1.06 
0.78 
0.576 
0.431 
0.327 
0.250 
0.193 
0.151 
0.120 
0.097 
0.079 
0.064 
0.054 
0.046 
0.039 
0.034 

900 
lO"3 

1.37 
2.62 
4.81 
5.68 
5.04 
3.88 
2.83 
2.01 
1.42 
1.01 
0.73 
0.54 
0.40 
0.31 
0.24 
0.185 
0.146 
0.119 
0.098 

208 
lO"2 

0.00030 
0.122 
0.47 
0.98 
1.57 
2.16 
2.69 
3.10 
3.37 
3.50 
3.50 
3.40 
3.22 
2.98 
2.72 
2.45 
2.18 
1.93 
1.69 
1.47 
1.27 
1.10 
0.94 
0.81 
0.69 
0.59 

1131 
lO-3 

1.56 
2.82 
4.63 
4.67 
3.51 
2.39 
1.61 
1.08 
0.74 
0.52 
0.37 
0.27 
0.202 
0.160 
0.125 
0.096 
0.077 
0.065 
0.054 

92 
279 
lO"2 

0.0147 
0.139 
0.479 
0.94 
1.42 
1.83 
2.10 
2.23 
2.23 
2.12 
1.96 
1.76 
1.54 
1.33 
1.14 
0.96 
0.81 
0.68 
0.57 
0.47 
0.39 
0.33 
0.27 
0.230 
0.195 
0.166 

92 
1332 
lO"3 

1.68 
2.9 
4.42 
3.93 
2.59 
1.63 
1.05 
0.68 
0.46 
0.33 
0.231 
0.166 
0.129 
0.104 
0.080 
0.061 
0.051 
0.044 
0.035 

412 
lO"2 

0.052 
0.175 
0.484 
0.85 
1.13 
1.27 
1.28 
1.19 
1.05 
0.89 
0.74 
0.60 
0.49 
0.39 
0.310 
0.247 
0.197 
0.158 
0.127 
0.103 
0.083 
0.068 
0.057 
0.048 
0.041 
0.036 

1500 
10-3 

1.7 
2.9 
4.2 
3.4 
2.04 
1.22 
0.77 
0.49 
0.33 
0.236 
0.166 
0.118 
0.093 
0.077 
0.059 

662 
lO"2 

0.104 
0.228 
0.489 
0.690 
0.740 
0.673 
0.577 
0.437 
0.332 
0.250 
0.187 
0.140 
0.106 
0.080 
0.062 
0.048 
0.038 
0.030 
0.024 
0.0196 
0.0161 
0.0134 
0.0113 
0.0098 
0.0085 
0.0075 

2000 
lO"3 

1.68 
2.9 
3.6 
2.25 
1.06 
0.59 
0.36 
0.217 
0.153 
0.111 
0.072 
0.053 
0.048 
0.037 
0.025 

Hulme et al. and those of Table VII to HNO; in each 
case the appropriate comparisons with earlier work are 
made. The first striking feature is the excellent agree
ment, far better than the accuracy which had been 
claimed, with the calculations of Hulme et al. This means 
that interpolations, such as Grodstein's, based on the 
Hulme values would be expected to be good and need 
no major revision in this energy range (however, see 
below). The errors which remain are of the same mag
nitude as screening effects; such effects must be included 
before the change in the cross section from the Hulme 

values is significant. Agreement with the HNO results 
is also excellent, and within the estimated error of the 
present calculation. The first result of this section is 
then the establishment of the accuracy of the values of 
Hulme et al. 

In Table VII we have also given the corresponding 
cross section as obtained in the NBS tables.31 The com-

31 Since the NBS values are for total absorption cross sections, 
the contribution from higher shells is removed by dividing out the 
simple multiplicative factor which Grodstein used to put it in. 
Another smaller correction is also needed to obtain a i£-shell cross 
section without screening. 
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208 keV 

60 90 
6 (DEGREES) 

FIG. 1. i£-shell angular distributions for U in barns/steradian. 
The small cross sections in the shaded region of the graph are of 
low accuracy. 

parison is rather surprising; even in the 1-MeV region, 
the present results are 5-10% lower than corresponding 
interpolations from the NBS tables. It is hard to under
stand this, since the present results agree with Hulme 
et al. and the NBS tables are based on Hulme et al. By 
2 MeV, the difference has reached 25%. Further proof 
that this difference is real is provided by a new calcula
tion32 which HNO have undertaken to check our results; 
it appears that they have obtained complete agreement 
with our cross section for Z=92 at 1.332 MeV. 

A comparison with the extrapolation formula of 
Pratt7 is given in Table VIII for Z=82. This formula, 
which is exact at very high energies and exact for light 
elements at all energies, is in good agreement with the 
Hulme values and so also with the present calculation in 
the 1-MeV range. However Table VIII suggests that 
the very close agreement at 1 MeV is misleading, since 
for the higher energy of 2 MeV the two differ by 10%. 

The recent experimental measurements33"36 of the 
total cross section from the K shell are given in 
Table IX.37 These results were all reported as in good 

32 S. Hultberg (private communication). We should like to 
thank Dr. Hultberg for undertaking this calculation and for 
communicating its results prior to publication. 

33 K. W. Seeman, Bull. Am. Phys. Soc. 1, 198 (1956). 
34 S. Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959). 
35 E. J. Bleeker, P. F. A. Goudsmit, and C. DeVries, Nucl. Phys. 

29, 452 (1962). 
36 G. Missoni (to be published). 
37 One should also note the measurement by Bleeker, Goudsmit, 

and DeVries of the ratio <r(2.754)[a(1.368) in Pb. A similar ratio 

accord with the NBS tables, which again says that the 
experimental results above 1 MeV are higher than the 
theoretical values of the present calculation. 

The second result of this section is then the finding of 
significantly lower cross sections in the energy region 
above 1 MeV than are given in the NBS tables or in two 
recent experiments. We have previously outlined the 
evidence for the accuracy of the present calculations. If 
these arguments are correct we see no theoretical 
explanation for the discrepancy. It is true that screening 
effects will modify the pure Coulomb calculations, but 
for the K shell such corrections are expected to be only 
1-2%, and in the wrong direction. 

TABLE XII. Comparison of angular distributions with HNO 
results, normalized to agree with this work at the underlined 
angles. 

£(keV) 

9 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 

208 
This 
work HNO 

0.12 
0.47 
0.98 
1.57 
2.16 
2.69 
3.10 
3.37 
3.50 
3.50 
3.40 
3.22 
2.98 
2.72 
2.45 
2.18 
1.93 
1.69 
1.47 
1.27 
1.10 
0.94 
0.81 
0.69 
0.59 

0.13 
0.53 
0.97 
1.50 
2.17 
2.73 
3.13 
3.37 
3.47 
3.50 
3.43 
3.23 
3.00 
2.77 
2.47 
2.20 
1.93 
1.70 
1.47 
1.27 
1.10 
0.93 
0.80 
0.67 
0.50 

279 
This 
work HNO 

0.01 
0.14 
0.48 
0.94 
1.42 
1.83 
2.10 
2.23 
2.23 
2.12 
1.96 
1.76 
1.54 
1.33 
1.14 
0.96 
0.81 
0.68 
0.57 
0.47 
0.39 
0.33 
0.27 
0.23 
0.20 
0.17 

0.17 
0.51 
0.94 
1.38 
1.83 
2.10 
2.23 
2.21 
2.10 
1.95 
1.76 
1.53 
1.34 
1.13 
0.96 
0.81 
0.68 
0.57 
0.47 
0.40 
0.34 
0.28 
0.23 
0.19 
0.17 

412 
This 
work HNO 

0.05 
0.18 
0.48 
0.85 
1.13 
1.27 
1.28 
1.19 
1.05 
0.89 
0.74 
0.60 
0.49 
0.39 
0.31 
0.25 
0.20 
0.16 
0.13 
0.10 
0.08 
0.07 
0.06 
0.05 

0.05 
0.18 
0.48 
0.77 
1.14 
1.27 
1.28 
1.18 
1.04 
0.88 
0.73 
0.61 
0.49 
0.39 
0.30 
0.24 
0.20 
0.16 
0.12 
0.10 
0.09 
0.07 
0.06 
0.05 

662 
This 
work HNO 

0.10 
0.23 
0.49 
0.69 
0.74 
0.67 
0.56 
0.44 
0.33 
0.25 
0.19 
0.14 
0.11 
0.08 
0.06 
0.05 
0.04 
0.03 

0.13 
0.27 
0.49 
0.68 
0.74 
0.67 
0.56 
0.44 
0.33 
0.25 
0.19 
0.14 
0.11 
0.08 
0.06 
0.05 
0.04 
0.03 

was obtained earlier by G. R. Bishop, C. H. Collie, H. Halban, 
A. Hedgran, K. Siegbahn, S. duToit and R. Wilson, Phys. Rev. 80, 
211 (1950); an early result for <r(2.62) in Pb is given by G. D. 
Latyshev, Rev. Mod. Phys. 19, 132 (1947). See also the total 
photoelectric absorption cross-section measurements of W. F. 
Titus, Phys. Rev. 115, 351 (1959), at 662 keV in a series of 
elements, and of B. I. Deutch and F. R. Metzger, ibid. 122, 848 
(1961) at 279 keV in Tl. Particularly interesting for this paper are 
total absorption measurements at 2.62 MeV in various elements 
by I. E. Dayton, Phys. Rev. 89, 544 (1953) and W. F. Titus (to be 
published), which lie appreciably below the earlier theories. 
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TABLE XIII. Ratio of experiment to theory for angular dis
tributions in U, both distributions normalized to unity at the 
underlined angles. 

\Experimenter Sujkowski 
Angle\Energy (keV) 279 

Hultberg 
412 662 1332 

0° 
15° 
30° 
45° 
60° 
75° 
90° 

6.2 
0.95 
1.00 
1.05 
0.94 
0.92 
0.98 

2.2 
0.84 
1.00 
1.10 
1.33 
1.58 
1.90 

0.89 
1.00 
1.04 
1.32 
1.46 
1.68 
1.69 

0.71 
1.00 
1.28 
0.87 
0.91 
0.67 
0.00 

VI. ANGULAR DISTRIBUTIONS 

Until quite recently the only theoretical result for the 
angular distribution of relativistic iT-shell photoeffect 
was that of Sauter,6 Eq. (2.5), and there was no experi
mental information. When corrections of relative 0(a) 
were computed by Banerjee,38 Gavrila,26 and Nagel27 it 
was found that they did not significantly change the 
predicted angular distributions, including the prediction 
of a vanishing cross section in the forward direction. On 
the other hand, the experiments of Hultberg39-41 indi
cated some striking deviations from the Sauter distribu
tion: A nonvanishing forward cross section, a shifting 
of the maximum in the cross section toward larger 
angles, and a tendency of the cross section to hold up at 
large angles. We shall return to the theoretical discus
sion of these matters following the presentation of our 
numerical calculations and their comparison with HNO 
and experiment. 

The i£-shell angular distributions obtained in the 
present numerical calculations are summarized in 
Tables X and XI . We present these results in some 
detail, despite their limited accuracy, since they do dis
play the significant deviations from the Sauter distribu
tion and so provide more nearly correct predictions. The 
very small large-angle cross sections are not tabulated. 
For qualitative purposes we also show in Fig. 1 the 
Z=92 distributions for several energies. Forward scat
tering increases with increasing energy, the maximum 
moves in, and backward scattering remains finite but 
decreases with increasing energy. 

For the lower energies we may again compare these 
results with those of HNO which become available 
(although they have not been published) in the course 
of the present calculation. The comparison for U is 
given in Table XI I , where the HNO values, which are 
normalized to unity at the angle of maximum emission, 
are read from their graphs and normalized to agree with 

38 H. Banerjee, Nuovo Cimento 10, 863 (1958). 
39 A. Hedgran and S. Hultberg, Phys. Rev. 94, 498 (1954). 
40 S. Hultberg, Arkiv Fysik 9, 245 (1955). 
41 S. Hultberg, Arkiv Fysik 15, 307 (1959). 

20 30 40 50 
9 (DEGREES) 

6 0 70 

FIG. 2. Comparison with the Sauter angular distribution from 
Z=84 for a series of energies. The ratio R of the present distribu
tion to the Sauter distribution is plotted, where both distributions 
have been normalized to their respective total cross sections. The 
approximate angles of maximum emission are marked. 

our absolute results at the underlined angles. The two 
calculations are in good agreement. 

Experimental results for iT-shell angular distributions 
have been obtained for uranium by Hultberg39 (412, 662, 
and 1332 keV) and by Sujkowski40 (279 keV); no other 
true iT-shell distributions are known to us, excepting the 
early work of Hultberg.37-38 In Table X I I I we give, for 
a few selected angles, the ratio of experiment to theory. 
The experimental results are available at quite fine 
angular intervals, and the 279- and 662-keV cases have 
elsewhere2-42 been compared with the HNO predictions 
in graphical form. Except at forward angles the 279-keV 
result of Sujkowski seems to be in good agreement with 
theory, and it should be noted that at this low energy 
the forward cross section is very small. The higher 
energy data of Hultberg shows more marked deviations 
from theory; now that fairly good theoretical estimates 
are available, further experimental data in this energy 
region would be desirable. Note that at higher energies 
theory predicts a larger forward cross section than was 
observed. [Angular distributions for Au at 412 keV in 
the range 20°-90° have now been obtained by Bergkrist 
and Hultberg43 in excellent agreement with theory.] 

Let us next compare these new theoretical results 
with the much-used Sauter distribution. This has been 
done for a series of energies in Fig. 2. What is plotted is 
the ratio R of the present distribution to the Sauter 
distribution, with both distributions normalized to their 
respective total cross section [(da/dty/a']. Thus, the 

42 Z. Sujkowski, Arkiv Fysik 20, 269 (1961). 
43 K. Bergkvist and S. Hultberg, Arkiv Fysik (to be published). 
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FIG. 3. High-energy behavior of angular distribution. F(x) 
==(4e2a5e)-1(do-M2) is plotted against x = kd for Z=82 at three 
energies and compared with its form in the high-energy limit. 

straight line R=\ corresponds to the Sauter distribu
tion ; an angular region in which R— constant is a region 
in which the distribution locally has the Sauter shape. 
The only case shown is for Z = 84. For Z = 26 the curves 
essentially follow the straight lines R—l and even for 
Z==50 the deviations are barely significant within the 
errors of the calculation This was why, as was eluci
dated by later theoretical work, it was possible to get 
along with a Sauter distribution for many years—the 
shape was much better than the normalization. Roughly 
speaking, the error in the Sauter total cross section is 
0(wa) (from omission of the characteristic e~™ factor) 
but the significant errors in the Sauter distribution are 
only 0(a2). But Fig. 2 does show that in the heaviest 
elements the deviations from the Sauter distribution be
come significant. The rise in R at small angles occurs 
because the Sauter distribution, unlike an exact calcula
tion, vanishes in the forward direction. If this were the 
only region which deviated from Sauter form the curve 
would elsewhere behave as R~ constant. Instead, at 
larger angles it falls off more slowly than the Sauter 
form, and indeed there is no sizeable angular region of 
Sauter shape. These qualitative features were first re
marked in the experiments. Finally, the angle 0max of 
maximum emission, roughly indicated on the graphs, 
occurs in the region in which R is rising, so the cross 
section is staying up in comparison to Sauter, and so 
#max is being shifted toward larger angles in comparison 
to the Sauter distribution. This too was first noted in 
the experiments. 

The relative 0(a) corrections, mentioned earlier, do 

not shed much light on these properties—they appear 
to be 0(a2) effects. This arises, as was noted by Nagel,27 

both because at intermediate energies the 0(a) term is 
not large and because its distribution is similar to the 
Sauter form. There is a tendency for a maximum at 
larger angles and for a larger cross section at back angles, 
but especially for the latter effect the increase is in
sufficient. Nagel also pointed out that the reason the 
0(a) distribution vanishes in the forward direction is 
that it arises as a cross term with the Sauter matrix 
element. The lowest order nonvanishing cross section in 
the forward direction 1(0) is relative 0(#2), and this Na
gel obtained.43a I t has been conventional to express this 
in terms of the ratio K=I(0)/I(dmax). From Table X I 
we would estimate that at 1332 keV, this ratio is 0.30 
for Pb and 0.38 for U. These compare with the theo
retical values 0.27 obtained for Pb by Sauter and 
Wiister44 in a numerical calculation and 0.42 obtained 
by Nagel for Pb from the relative 0(a2) term above. 
Hultberg's experimental value for K in U at 1332 keV 
was 0.245, which again reflects the fact that the experi
mental forward cross section at the higher energies lies 
below theory.45 (Some new measurements of K have 
recently been reported by Rimskii-Korsakov et al.4Q) 

I t is finally of some interest to discuss the behavior of 
the i^-shell angular distribution in the high-energy limit. 
At high energies, the significant angles are 0(l/&), and 
in analytic work it is appropriate to expand in 1/k and 
6, but for arbitrary x^kd. Neglecting 0(a2), Nagel27 

writes the distribution in this limit as 

(1+*2) 
f.-^-L-l 
1 2 (l+x2)1^ 

(6.1) 

including the 0(a) correction to the Sauter distribution 
which has its maximum at #=1/V2. Nagel (and also 
Mork and Olsen47) find that in this limit forward 
scattering is characterized by K=5.85a2 to lowest non-
vanishing order in a. Mork and Olsen also obtained an 
exact expression for the forward scattering in the high-

43a This result was also independently obtained by Arne Reitan, 
Physica Norvegica 1, 113 (1961). 

44 F. Sauter and H. O. Wiister, Z. Physik 141, 83 (1955). 
Actually these authors obtained 7(0°) numerically and took 
/(0max) from the usual Sauter distribution, a procedure which 
certainly becomes invalid at high energies as will be seen shortly. 

45 Nagel (Ref. 27) compares the Sauter-Wiister 0.27 value with 
Hultberg's 0.245, calling the agreement rather good, apparently 
assuming that for large Z, K does not change appreciably with Z. 
The present results do not support this assumption, and we con
clude there is a significant difference between theory and 
experiment. 

46 K. K. Aglinstev, V. V. Mittrofanov, A. A. Rimskii-Korsakov, 
and V. V. Smirnov, Bull. Acad. Sci. USSR 25, 1146 (1962); A. A. 
Rimski-Korsakov and V. V. Smirnov, Zh. Eksperim. i Teor. Fiz. 42, 
67 (1962) [English transl.: Soviet Phys.—JETP 15, 47 (1962)]; 
and Bull. Acad. Sci. USSR 26, 1180 (1963). 

47 K. Mork and H. Olsen, Proceedings of the Physics Seminar in 
Trondheim, No. 5, 1960 (unpublished). 
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energy limit; such an expression was also later obtained 
by Weber and Mullin,48 who graph F(0) against Z, 
where 

1 da 
F(0) = (6.2) 

4eVe dQ 
in dimensionless units. In the high-energy limit, F is 
independent of energy. For Pb we would compute 
K = 2 .1 , an absurd result (K<1) which could be inter
preted as a gross failure of the expansion of F(Q) in a. 
In fact, the error lies in the supposition that the position 
of the maximum is given by the Sauter maximum, 
whereas numerical calculations of Boyer49 and Nagel50 

show that in heavy elements the maximum occurs for 
forward emission and the distribution decreases mono-
tonically. Using NagePs calculation50 we find that the 

48 T. A. Weber and C. J. Mullin, Phys. Rev. 126, 615 (1962). 
49 R. H. Boyer, Ph.D. thesis, Oxford University, 1957 (un

published). 
6°B. Nagel, Arkiv Fysik 24, 151 (1963). 

ratio of forward emission to emission at the Sauter 
angle is 1.6. In Fig. 3 we plot F(x) for Z=82 for three 
of the energies of our numerical calculation and also 
show the high-energy limit from NagePs work. This 
again makes very clear how far removed 2 MeV is from 
the asymptotic energy region. Even the manner in 
which the minimum at forward angles gets filled remains 
to be calculated by higher energy work. (The high-
energy limit has now also been discussed by Gorshkov 
and Mikhailov.51) 

ACKNOWLEDGMENTS 

This work was suggested and encouraged by Dr. 
Harvey Hall, to whom all the authors are much indebted. 
Thanks are also due to Dr. Solve Hultberg, for helpful 
discussions, correspondence, and prepublication results. 

51V. G. Gorshkov and A. I. Mikhailov, Zh. Eksperim. i Teor. Fiz. 
44, 2142 (1963) [English transl : Soviet Phys.—JETP (to be 
published)]. 


